miércoles, 28 de octubre de 2009

Videos de tiro parabolico y tiro oblicuo

Objetivos
Uno de los objetivos principales es poner de manifiesto la interacción entre el conocimiento científico (matemático y físico) y el tecnológico que permite el perfeccionamiento y el avance entre ambos.

• Identificar, interpretar y graficar funciones lineales y cuadráticas a partir de las situaciones planteadas.

• Manifestar una actitud crítica frente a nuevas herramientas tecnológicas.

• Desarrollar una actitud de valoración, curiosidad, y apertura frente al análisis de la estructura y el funcionamiento de nuevos productos tecnológicos

• Desarrollar estrategias para la resolución de problemas de aplicaciones físicas.

Introduccion:La mayoría de movimientos parabólicos comienzan con una velocidad oblicua, no horizontal, de tal forma que el objeto tiene una parte de movimiento ascendente y otra parte descendente.
Tal como se observa en el dibujo adjunto, un lanzamiento oblicuo que se inicie en el suelo describe una trayectoria que resulta simétrica respecto de un eje vertical. Podemos entonces considerar la segunda mitad de dicho movimiento como un tiro horizontal que se iniciaría en la posición de mayor altura del tiro oblicuo, tal como indica el segundo dibujo. Por tanto, como al lanzamiento horizontal (segunda parte del tiro oblicuo) le es aplicable la hipótesis de descomposición del movimiento, esta misma hipótesis se ha de poder aplicar para el movimiento completo, es decir, al tiro oblicuo.
Es decir, planteamos que la trayectoria de un tiro oblicuo se debería obtener componiendo las de dos movimientos independientes y perpendiculares entre sí: un movimiento horizontal uniforme y un movimiento vertical uniformemente acelerado, con aceleración igual a g.
ECUACIONES DEL TIRO OBLICUO.El tiro parabolicoPara realizar este trabajo fue necesario investigar diferentes marcos teóricos y a partir de ellos llevarlos a la práctica. “El tiro oblicuo” con una metodología lúdica apoyada por la tecnología brinda la posibilidad de lograr una “visión diferente de la matemática” por parte de los estudiantes, logrando un aprendizaje con significado.
El tema fue pensado con el fin de abordar la función lineal y cuadrática, trabajando con las posiciones en función del tiempo como ecuaciones principales, junto con la ecuación de la trayectoria. Con la convicción de trabajar con diferentes tecnologías, desde la pizarra hasta las imágenes que brinda el juego “tiro oblicuo” elaborado en la computadora.





miércoles, 14 de octubre de 2009

Ejercicios resueltos del tiro parabolico y tiro oblicuo

Ejercicios de Cinemática: Tiro parabólico.
Resolver los siguientes problemas:
Problema n° 1) Se lanza un proyectil con una velocidad inicial de 200 m/s y una inclinación, sobre la horizontal, de 30°. Suponiendo despreciable la pérdida de velocidad con el aire, calcular:
a) ¿Cuál es la altura máxima que alcanza la bala?.
b) ¿A qué distancia del lanzamiento alcanza la altura máxima?.
c) ¿A qué distancia del lanzamiento cae el proyectil?.
Respuesta: a) 39,36 m
b) 1732,05 m
c) 3464,1 m
Problema n° 2) Se dispone de un cañón que forma un ángulo de 60° con la horizontal. El objetivo se encuentra en lo alto de una torre de 26 m de altura y a 200 m del cañón. Determinar:
a) ¿Con qué velocidad debe salir el proyectil?.
b) Con la misma velocidad inicial ¿desde que otra posición se podría haber disparado?.
Respuesta: a) 49,46 m/s
b) 17 m
Problema n° 3) Un chico patea una pelota contra un arco con una velocidad inicial de 13 m/s y con un ángulo de 45° respecto del campo, el arco se encuentra a 13 m. Determinar:
a) ¿Qué tiempo transcurre desde que patea hasta que la pelota llega al arco?.
b) ¿Convierte el gol?, ¿por qué?.
c) ¿A qué distancia del arco picaría por primera vez?.
Respuesta: a) 1,41 s
b) No
c) 17,18 m
Problema n° 4) Sobre un plano inclinado que tiene un ángulo α = 30°, se dispara un proyectil con una velocidad inicial de 50 m/s y formando un ángulo β = 60° con la horizontal. Calcular en que punto del plano inclinado pegará.
Respuesta: 165,99 m
Problema n° 5) Un cañón que forma un ángulo de 45° con la horizontal, lanza un proyectil a 20 m/s, a 20 m de este se encuentra un muro de 21 m de altura. Determinar:
a) ¿A qué altura del muro hace impacto el proyectil?.
b) ¿Qué altura máxima logrará el proyectil?.
c) ¿Qué alcance tendrá?.
d) ¿Cuánto tiempo transcurrirá entre el disparo y el impacto en el muro?.
Respuesta: a) 9,75 m
b) 10,2 m
c) 40,82 m
d) 1,41 s
Problema n° 6) Un mortero dispara sus proyectiles con una velocidad inicial de 800 km/h, ¿qué inclinación debe tener el mortero para que alcance un objetivo ubicado a 4000 m de este?.
Respuesta: 26° 16´ 16"
Responder el siguiente cuestionario:
Pregunta n° 1) En el tiro parabólico ¿qué tipo de movimiento se manifiesta en el eje "x"?.
Pregunta n° 2) En el tiro parabólico ¿qué tipo de movimiento se manifiesta en el eje "y"?.
Pregunta n° 3) ¿En qué posición es nula la velocidad en el eje "y"?.

Ejercicios de Cinemática: Tiro oblicuo.
Resolver los siguientes problemas:
Problema n° 1) Se dispara un perdigón con un rifle de aire comprimido, desde lo alto de una colina. El proyectil parte con una velocidad de 50 m/s, en una dirección que forma un ángulo de 37° con la horizontal, despreciando el rozamiento, determinar:
a) La posición del perdigón a los 2 s, 5 s y 8 s después de haber partido, respectivamente y representar en un diagrama X-Y.
b) Las componentes de los vectores velocidad en los instantes anteriores, representar dichos vectores, en el diagrama anterior, en las cuatro posiciones conocidas.
c) Instante, posición y velocidad en el momento en que se encuentra al mismo nivel que el de partida.
d) Sin hacer cuentas, justifique entre que instantes de los especificados cree Ud. que el proyectil alcanzará la máxima altura, ¿qué velocidad tendrá allí?, calcúlelo ahora y verifique su hipótesis.
e) Con toda la información anterior, dibujar la trayectoria del proyectil y escribir la ecuación de la misma.
Respuesta: a) (80 m;40,4 m), (200 m;27,5 m) y (320 m;-73,6 m)
b) (40 m/s;10,4 m/s), (40 m/s;-19 m/s) y (40 m/s;-48,4 m/s)
c) 6,12 s; (244,8 m;0 m) y (40 m/s;-60 m/s)
d) 3,06 s y 0 m/s
e) 0,75.x - 0,003.x ²/m
Problema n° 2) Desarrollar el problema anterior para un ángulo de partida de 53°.
Respuesta: a) (60 m;60,4 m), (150 m;77,5 m) y (240 m;6,4 m)
b) (30 m/s;20,4 m/s), (30 m/s;-9 m/s) y (30 m/s;-38,4 m/s)
c) 8,16 s; (244,8 m;0 m) y (40 m/s;-60 m/s)
d) 4,08 s y 0 m/s
e) 1,33.x - 0,005.x ²/m
Problema n° 3) Un gato maulla con ganas, instalado sobre un muro de 2 m de altura, Pedro está en su jardín, frente a él y a 18 del muro, y pretende ahuyentarlo arrojándole un zapato. El proyectil parte con una velocidad de 15 m/s, formando un ángulo de 53° con la horizontal, desde una altura de 1,25 m, determinar:
a) ¿A qué distancia por encima de donde estaba el gato pasó el zapato?.
b) ¿A qué distancia al otro lado del muro llegó el zapato?.
Respuesta: a) 3,65 m
b) 4,95 m
Problema n° 4) Un jugador de fútbol efectúa un saque de arco, la pelota pica en la cancha 60 m más adelante y 4 s después de haber partido. Hallar la velocidad de la pelota en el punto más alto y con que velocidad llega a tierra.
Respuesta: a) 15 m/s
b) (15 m/s;-19,6 ms)
Problema n° 5) Un arquero arroja oblicuamente una flecha, la que parte desde una altura de 1,25 m con una velocidad de 20 m/s y formando un ángulo con la horizontal de 53°. La flecha pasa por arriba de un pino que está a 24 m de distancia y va a clavarse a 10 m de altura en otro pino ubicado más atrás. Despreciando el rozamiento y considerando que la flecha siempre es paralela al vector velocidad, determinar:
a) ¿Cuánto duró el vuelo de la flecha?.
b) ¿Con qué velocidad llegó al árbol?.
c) ¿Con qué ángulo se clavó?.
d) ¿Qué altura máxima puede tener el primer pino?.
Respuesta: a) 2,57 s
b) -37° 32´ 17"
c) 15,13 m/s
d) 13,65 m
Problema n° 6) Susana arroja horizontalmente su llavero desde la ventana de su departamento, y Gerardo lo recibe a 1,2 m de altura sobre el piso, 0,8 s después. Sabiendo que Gerardo se encuentra a 4,8 m del frente de la casa de Susana, hallar:
a) ¿A qué altura del piso partió el llavero?.
b) ¿Con qué velocidad llegó a las manos de Gerardo?.
Respuesta: a) 4,34 m
b) (6; -7,84) m/s
Problema n° 7) Un esquiador que se desliza por una rampa inclinada 30° llega al borde con cierta velocidad. Luego de un segundo de vuelo libre, retoma la pista, más abajo, 4,33 m delante del borde de la rampa. Determinar:
a) ¿Qué velocidad tenía en el borde de la rampa?.
b) ¿Con qué velocidad llegó a la pista?.
c) ¿Qué desnivel había entre el borde de la rampa y la pista?.
Respuesta: a) 5 m/s
b) 7,4 m
c) (4,33; -12,3) m/s
Problema n° 8) Un ejecutivo aburrido se entretiene arrojando horizontalmente bollos de papel, desde una altura de 1,2 m, hacia el cesto que tiene 2 m frente a él al otro lado del escritorio, para esto debe superar la esquina del escritorio que se encuentre a 75 cm sobre el piso y a 1 m delante de él, teniendo en cuenta que el cesto tiene 40 cm de alto por 40 cm de diámetro, determinar entre qué valores debe encontrarse la velocidad de partida de un bollo para que ingrese en el cesto.
Respuesta: (5,5 ± 0,5) m/s
Problema n° 9) Un malabarista muestra su destreza, manteniendo continuamente en el aire cuatro platos, los recibe con su mano izquierda, a 80 cm del piso, y los lanza con su mano derecha, desde la misma altura y a 1,2 m de donde los recibió. Los platos alcanzan una altura máxima de 4 m sobre el nivel del piso, hallar:
a) ¿Con qué velocidad los arroja?.
b) ¿Con qué velocidad pasan por el punto más alto?.
c) Si tarda 0,2 s en pasarlos de una mano a otra, estimar cada cuánto tiempo recibe un plato.
Respuesta: a) (0,74; 7,92) m/s
b) (0,74; 0) m/s
c) 0,46 s

Tiro oblicuo

En mecánica, la caída libre es la trayectoria que sigue un cuerpo bajo la acción de un campo gravitatorio exclusivamente. Aunque la definición excluya la acción de otras fuerzas como la resistencia aerodinámica, es común hablar de caída libre en la situación en la que el peso discurre inmerso en la atmósfera. Se refiere también a caída libre como una trayectoria geodésica en el espacio-tiempo de cuatro dimensiones de la Teoría de la Relatividad General.
En física, la caída libre es la trayectoria de un cuerpo que se lanza hacia el vacío.

Tiro Parabolico



Movimiento Parabólico

La composición de un movimiento uniforme y otro uniformemente acelerado resulta un movimiento cuya trayectoria es una parábola.
Un MRU horizontal de velocidad vx constante.
Un MRUA vertical con velocidad inicial voy hacia arriba.
Este movimiento está estudiado desde la antigüedad. Se recoge en los libros más antiguos de balística para aumentar la precisión en el tiro de un proyectil.
Denominamos proyectil a todo cuerpo que una vez lanzado se mueve solo bajo la aceleración de la gravedad.
1. Disparo de proyectiles.
Consideremos un cañón que dispara un obús desde el suelo (y0=0) con cierto ángulo θ menor de 90º con la horizontal.
Las ecuaciones del movimiento, resultado de la composición de un movimiento uniforme a lo largo del eje X, y de un movimiento uniformemente acelerado a lo largo del eje Y, son las siguientes:
Las ecuaciones paramétricas de la trayectoria son
x=v0·cosθ·ty=v0·senθ·t-gt2/2
Eliminado el tiempo t, obtenemos la ecuación de la trayectoria (ecuación de una parábola)